首页 > 芯片 > 半导体 > 注水井测试误差是多少,试验测试结果2500rmin表示法的极限误差是多少

注水井测试误差是多少,试验测试结果2500rmin表示法的极限误差是多少

来源:整理 时间:2023-11-06 08:08:01 编辑:亚灵电子网 手机版

本文目录一览

1,试验测试结果2500rmin表示法的极限误差是多少

0.5r/min

试验测试结果2500rmin表示法的极限误差是多少

2,注水井管理做到三定三率一平衡是指什么

(1)三定:定性、定压、定量。定性就是指注水井是平衡井还是加强井,注水层位是加强层、平衡层还是控制层;定压就是根据分层测试成果确定注水压力范围,并在单井上定出注水的上、下限压力点,每一压力点对应相应的注水量;定量就是根据注水井配水方案、分层测试的结果,确定注水量的范围。 (2)三率:三率指的是分层注水井的测试率、测试合格率、分层注水合格率。 (3)一平衡:一平衡是指以阶段注水为基础的年度地下注采平衡。

注水井管理做到三定三率一平衡是指什么

3,已知水准测量中ab读数的测量中误差为12mm则高差中误差是多少

你说测量A点,跟B点的数值,相差1.2嘛 那实高差也是1.2啊 除非你说的是一个是1.2,一个是-1.2,那他们就是相差2.4了
高差的数学公式为Hab=Ha-Hb,根据误差传播定律,在同精度观测的时,观测值代数和(差)的中误差,与观测个数n的平方根成正比:M=m(n)^0.5,代入数据的M=1.2(2)^0.5=1.697。

已知水准测量中ab读数的测量中误差为12mm则高差中误差是多少

4,埕岛油田一区馆陶组上段注水特征研究

赵红霞 刘利 任允鹏 李建 于东海参加本项工作的还有:崔映坤,王爱景,季雅新,张素玲,姜书荣,王世燕,张海娜等.摘要 埕岛油田馆陶组上段(简称“馆上段”)油藏饱和压力高,地饱压差小,加之没有活跃的边底水,油田天然能量不足,必须注水保持地层能量。为了搞好埕岛油田的注水开发,本文通过数值模拟手段从注采比、注水方式、油层吸水能力、水淹特征、含水上升规律、产液量、产油量变化等方面开展了该油田一区馆上段注水特征研究,以指导埕岛油田馆上段的注水开发。关键词 数值模拟 注采比 注水方式 注水特征 埕岛油田一、概况埕岛油田位于渤海湾南部的极浅海海域。构造上位于济阳坳陷与渤中坳陷交汇处的埕北低凸起的东南端。埕岛油田以北纬38°15′和193.8东西向测线为界分为三个区,北部为三区、中部为一区、南部为二区。一区为本课题研究的主要目标区,以其主体部位作为数值模拟区。数值模拟模型区内包括12个井组72口单井,自1995年起相继投入生产。投产初期平均单井日产油79t。截止1999年12月,模型区开井56口,日产液能力2432.4t,日产油能力1924t,日产油水平1862t,平均单井日产液能力41.5t,单井日产油能力32.8t,综合含水量20.9%,年采油72.1×104t,采油速度1.8%,累积产油346.85×104t,采出程度6.5%。二、主要开采特征研究开采特征研究是注水特征研究的基础,通过对埕岛一区馆上段天然能量、油井产能、产量递减、压降变化的分析,为数值模拟提供可靠依据。1.天然能量分析根据行业标准SY/T6167-1995《油藏天然能量评价方法》,对埕岛一区馆上段的天然能量进行了评价:①计算弹性产量比Q。=2.6;②计算每采出1%地质储量地层总压降值为0.72MPa。由能量分级标准可知,此点正好落在有一定天然能量框内,说明埕岛一区馆上段具有一定天然能量,但天然能量不足,需注水保持地层能量。2.油井产能分析统计埕岛一区馆上段平均初期单井日产油能力68.1t,方案设计日初产能力69t,符合程度好。但经分析认为,构成产能的几个因素存在不同程度的差异(表1)。表1 产能分析表由此可以看出,埕岛一区实际动用厚度和采油指数比方案预计要好,但生产压差却仅为方案设计值的一半。所以,要进一步改善开发效果,可从工艺上着手。3.产量递减到目前为止,埕岛油田一区馆上段油藏已投产17个井组108口井,只有两口井试注14天,因此油藏仍处于天然能量开采阶段,由于油藏没有活跃的边底水能量补充,虽然油井初期产能较高,但随着地层能量的下降,油井产液量产油量下降较快。为此,将模型区内投产的72口井进行递减分析,结果发现,模型区内的井全部投产以后平均单井日产油能力逐渐上升,大约一年后,油田开始出现递减且呈指数规律递减[1],递减期内平均单井日产油年递减率为29.9%。4.油田压降情况一区馆上段油藏饱和压力高,平均为10.12MPa,地饱压差小,平均为3.4MPa,地层压力降至饱和压力前可供利用的弹性能量弱,加之又无大面积连通的活跃的边底水供给,地层压力下降较快。通过对一区馆上段油藏测压资料统计,到1999年6月,平均地层总压降4.1MPa。1.模型建立(1)模型区选择三、数值模拟模型区选择在资料齐全、准确且地质认识清楚的埕岛油田一区馆上段主体部位。模型包括12个井组72口井。区域面积17.48km2,地质储量5296×104t。纵向上除(1+2)砂层组未考虑外,其他小层完全按地质上分层,共19个小层,即31~6、41~5、51~6、61和63作为模拟目的层,这些层包括了所有的目前射孔层位和将来配产配注方案的补孔层位。(2)网格划分平面网格划分 考虑到实际井网井距、计算机条件等因素,取数值模拟模型的平面网格步长为100m×100m,这样可以保证在300m左右的井距下,井间一般有2~3个网格。垂向网格划分 垂向网格划分与地质上所划分小层一致,即垂向网格为19个。因此,模型区网格总数为33212。2.控制参量的确定(1)射孔目前井网条件下,按生产井实际射孔状况射孔,注水后按配产配注方案进行补孔。(2)生产井最低井底流压与生产压差根据动态分析及垂直管流计算[2]结果,油井自喷生产的能力是较弱的,应立足于机械采油。机械采油方式最低井底流压主要受工艺下泵深度限制。埕岛油田平均下入深度按1000m考虑。为满足泵效,考虑300m沉没度,油层中部深度取1350m,因此将最低井底流压设定为6MPa。根据动态分析结果,初期平均生产压差在1.2MPa左右,由于最佳注水时机为0.85倍饱和压力,即8.5MPa附近,因此注水后最大生产压差设定为2.5MPa。(3)生产井最大日产液量动态分析结果显示,埕岛油田馆上段平均采油指数为3.5t/(d·MPa·m),补孔完善井网实施注水后,单井平均射开有效厚度21.6m,合理注水时机为0.85倍饱和压力,最低井底流压6MPa,因此最大生产压差为2.5MPa,综合含水60%时无因次采液指数为1.7左右,计算得到最大液量为321m3,取值300m3。虽然随着含水的上升,无因次采液指数上升,液量不断增大,但考虑到注水井注水能力、注采平衡、地面管线承受能力及方案的可比性,因此单井最大液量取值300m3。(4)注水井最高井底流压及最大日注水量以油层破裂压力的80%为上限。应用威廉斯《压裂指南》的破裂压力公式,计算得到馆上段破裂压力为21.2MPa,则注水井最高流压取值16.96MPa。生产井单井最大液量300m3,根据注采平衡的需要,注水井最大日注水量确定为600m3。参考同类油田资料初步计算,该注水量完全可以达到。3.历史拟合(1)拟合原则储量拟合精度控制在2%以内;产量拟合精度控制在1%以内;含水要求精细拟合全区含水和典型井含水;压力要求拟合全区压降及典型井压降。(2)拟合结果储量拟合 储量拟合误差最大的35层为1.79%,最小的41层为0.03%,总储量拟合误差为0.09%。产量拟合 根据动态分析,埕岛油田一区实际生产压差1~1.5MPa,模型区内初期产量79t,校正流体模型,使初产控制在80t左右。并拟合了有测压资料井的米采油指数。含水拟合 通过调整相渗曲线拟合含水,拟合期模型区平均误差2.7%,典型井含水误差在9%以内,含水上升趋势与实际保持一致。压力拟合 全区压力拟合到1999年6月,模型区模拟地层总压降为4.4MPa;实际地层总压降为4.1MPa,单井压降拟合误差在8%左右。四、注水特征研究1.注采比在分段注水的前提下,设计0.8,0.9,1.0,1.1四种不同注采比进行数值模拟研究,在注水过程中,注采比始终保持不变。地层压力降至0.85倍饱和压力注水,不同注采比数值模拟方案指标预测结果(表2)显示:注采比0.9~1.0开发效果最好,注采比0.8开发效果最差,注采比1.1开发效果居中。这主要是因为注采比1.1时,注水强度太大,水线推进不均匀,水驱效果差;注采比0.8时,地层压力下降较快,生产压差得不到保障,采油速度低,因而开发效果变差。注采比0.9~1.0很好地解决了上述矛盾,所以开发效果最好。表2 埕岛一区不同注采比开采期末指标对比表综合分析认为,埕岛油田属高孔隙度、高渗透率储集层,始终保持较高注采比极易造成水窜流,影响总体开发效果,因此,注采比总体上应该控制在0.9~1.0。由于埕岛油田注水较晚,地层已出现脱气,所以初期注采比可考虑控制在1.0稍高水平,待地层压力恢复到饱和压力时,再将注采比保持在0.9~1.0,从而既能保持较大的生产压差和采油速度,又不至于因注采比过高,注水强度过大,导致综合含水量迅速上升,驱油效率下降,开发效果变差。2.注水方式注水方式从纵向上来说主要分为笼统注水和分段注水两种。笼统注水时注入水容易沿物性好的高渗透层推进,油井见水后容易形成大孔道,造成水线单向突进,不利于提高水驱波及系数,不利于发挥各油层的潜力,也不利于实现分层注采平衡,但笼统注水工艺简单,采油工程费用少,通常适用于非均质不严重的油藏;分段注水有利于改善水驱波及系数,并实现注采平衡,但工艺较为复杂,特别是采油井段长、层间矛盾突出的井,工艺就更为复杂,且采油工程投资高,风险大,通常适用于非均质较严重的油藏。埕岛油田馆上段各个油层的原油性质、储集层物性无论是层间还是平面上,都存在不同程度的差异,因此埕岛油田要实现高水平开发,在现有的工艺水平条件下,对注水方式进行优化研究是必要的。(1)数值模拟优化研究注水方式根据埕岛一区馆上段配产配注研究,注水前首先对油水井按方案设计进行补孔作业。由于三级三段注水难度很大,工程尚难以实现,因此,数值模拟分段注水按两级两段考虑。笼统注水与分段注水数值模拟结果(表3)显示,后者开发效果好于前者。这主要是因为分段注水使分段配注成为现实,物性好、吸水能力大的层可以通过调小水嘴或降低注水压差实现少注,物性差、吸水能力弱的层通过调大水嘴或提高注水压差也可以实现多注,不但实现了注采总体平衡,而且使分段注采平衡基本成为可能,既减少了单层注入水的突进,节约了注水量,又改善了水驱效果,因此分段注水开发效果好于笼统注水。表3 埕岛一区不同注水方式开采期末指标对比表但是,分段注水比笼统注水优势不是十分明显,主要原因有以下几点。第一,指标预测15年,而天然能量开采期为4.5年,且两种开发方式相同,注水时间仅为10.5年,注水时间短,因此,开发效果差异小。第二,埕岛油田虽然存在较严重的层间、平面非均质,但总体上仍属于高孔高渗储集层。岩心分析渗透率统计显示,4砂层组空气渗透率最高,平均为3072×10-3μm2,5砂层组空气渗透率最低,但平均也达到1440×10-3μm2。第三,埕岛油田大部分为斜井,受目前工艺水平的限制,根据实际静态资料,注水井最多分两段,油层层间非均质虽然有所减小,但有的井级差仍然较大,还不足以使水线均匀推进。第四,模型平面网格步长100m,网格内部物性参数相同,而实际地层存在差异。如11E-4井笼统注水时渗透率级差为18.5,实施分段注水后,第一段渗透率级差为7.27,第二段渗透率级差为3.52,分段后,油层非均质性有所改善。而22B-4井,笼统注水时渗透率级差为90.2,实施分段注水后,第一段渗透率级差仍为90.2,第二段渗透率级差为9.16,分段后,油层非均质性改善不大。(2)类比研究注水方式孤岛油田中一区3~4层系投产初期为反九点井网,第一次调整后将油井合采改为分采,第二次调整后将水井合注改为分注,分段后,日产油水平提高了311t,含水降低0.7个百分点,分段注水效果好于合注。综上所述研究成果,鉴于埕岛油田馆上段储集层非均质程度严重的特点,应该实施分段注水。3.油层吸水能力(1)试注资料分析埕岛油田只在一区主体部位的22A-3和22A-6井进行了试注,并且时间很短,只有13天22小时,未取得相应的试注压力等资料,所以对油层吸水能力认识不很清楚。22A-3井分两段注水第一段44、51层,44层为补孔层段,51层经过一段时间的排液,周围25B-2井也在采同一层位,地层有一定压降,注水时井口压力4.9MPa,累积注水393m3。由于注水井未取得流压测试资料,为了掌握吸水能力的变化情况,用视吸水指数来表示吸水能力的大小。视吸水指数=日注水量/井口压力,计算视吸水指数平均为5.76m3/(d·MPa)。第二段52~56层,这几个层为该井的主力小层,到目前为止,该井已累积采液38447m3,地层压力下降较大,注水时仅靠静水柱压力水就可进入油层,井口压力为0,累积注水量859m3。22A-6井分两段注水第一段44、51层均为补孔层段,未经排液,没有压降,因此注水时井口压力较高,平均为8.6MPa,累积注水548m3,计算视吸水指数平均为4.58m3/(d·MPa)。第二段52~55层,这几个层为该井的主力小层,周围油井都已射孔,到目前为止,该井已累积采液54300m3,地下亏空严重,注水时仅靠静水柱压力水就可进入油层,井口压力为0,累积注水量1026m3。由于该两口井注水前未测静压,且由于水嘴很小,嘴损尚有待进一步深入研究,因此注入压差难以估算。(2)油藏工程方法分析油层吸水能力埕岛油田试注时间很短,并未取得很多资料,无法进行常规的吸水能力分析。应用平均油水相对渗透率曲线计算的水油流度比为2.04,理论推算油藏初期每米吸水指数与每米采油指数之比应等于水油流度比,初期埕岛一区每米采油指数为3.5t/(d·MPa·m),所以理论计算初期每米吸水指数为7.14m3/(d·MPa·m)。(3)数值模拟研究油层吸水能力油田开发实践表明,注水开发过程中,随着含水饱和度的增加,流动阻力减小,水相相对渗透率增大,油层吸水能力增强。注水开发后,随着含水的上升,每米吸水指数不断增加。该区数值模拟结果符合以上规律,中含水期吸水指数上升较慢,从注水到含水60%,吸水指数由32m3/(d·MPa)上升到55m3/(d·MPa);高含水期,吸水指数上升较快,到含水92.7%时,吸水指数上升到116m3/(d·MPa)。4.水淹特征(1)注水前部分油井过早见水埕岛油田投产初期,由于各种原因,部分井射孔底界控制不够或平面上距油水边界较近,致使有的油井投产后很快见水,目前,模型区72口井已有29口井不同程度见水。投产即见水井9口,占见水井数的31.0%;投产后见水的井20口,占见水井数的69.0%。有边水的小层,油层边部含水饱和度略高,计算其边水推进速度为2.93m/d。(2)注水后油井见水快,油层平面水淹面积逐步扩大埕岛一区馆上段油层孔隙度大,渗透率高。数值模拟结果显示:油田注水后3个月内油井受效,注入水水线推进速度为5.33m/d;一年半左右,综合含水达到60%,主力层采出程度仅11.8%,而平面水淹面积达到65.1%;评价期末,综合含水92.7%,主力层采出程度24.0%,主力油层平面水淹面积84.9%(表4)。(3)注采井网完善程度不同,储集层渗透率不同,相应的水淹程度不同数值模拟结果表明:油层平面水淹程度与注采井网的完善程度和储集层渗透率有关,在注采井网完善程度好,储集层渗透率高的油层,平面波及系数大,如41层最高可达94.7%,而注采井网完善程度相对差的非主力层或渗透率相对低的油层,如33层平面波及系数在中含水期只达到28.6%,到开采期末,该层平面波及系数只有42.9%(表4)。表4 埕岛一区平面波及程度统计表(4)纵向上主力层水淹程度高,非主力层水淹程度相对较低纵向上主力层水淹程度高,采出程度大,非主力层水淹程度相对较低,采出程度较小。具体到单井上也是如此,CB22B-1井射开8个小层,其中41、52小层为主力小层,单层厚度大,渗透率高,所以水淹程度较高。而44、53、54虽然是主力小层,但该井在这三个层中或处于砂体边界,或注采系统不完善,所以水淹相对较差。因此油层纵向水淹状况与其地质条件及物性有很大关系。5.含水上升规律(1)油藏工程方法分析含水上升规律埕岛油田属常规稠油油藏,油水粘度比较高,在含水与采出程度关系曲线上一般呈凸形曲线,主要储量在高含水期采出。这是由于非活塞式水驱油,岩石的润湿性和储集层的非均质性决定的。(2)油田基本无无水采油期,注水前已结束低含水期埕岛一区馆上段油层1996年大规模投入开发,投产初期油田含水>2%,基本无无水采油期和无水采收率。注水前模型区预测综合含水29.9%,已结束低含水期。与同类型其他油田相比,含水略高。孤岛油田注水时含水<2%;孤东油田注水时含水为20.7%。(3)中低含水期含水量上升快埕岛一区馆上段低含水期及中含水初期依靠天然能量开采,目前,综合含水量20.8%,采出程度5.33%,含水上升率3.9%;注水前综合含水量 29.9%,采出程度7.81%,含水量上升率3.83%。孤东油田三套不同层系(6区3-4、6区5-6、7区52+3)天然能量开采阶段含水量上升率分别为6.3%、4.9%、5.4%,孤岛油田为1.3%。埕岛一区含水量上升速度介于同期同类型油田之间。中含水期,孤东油田三套层系含水量上升率分别为16.7%、8.5%、11.2%,孤岛油田为5.2%,埕岛一区为12.2%,与同期孤东7区52+3层系含水上升速度相近(表5)。(4)高含水期含水量上升速度减缓埕岛一区含水量上升高峰主要在中含水期,含水量大于60%以后,含水量上升速度明显减缓,其上升率为4.23%,含水量上升规律与常规稠油油藏基本一致。表5 各油田注水时含水情况统计表6.产液量、产油量变化(1)枯竭式开采阶段产液量、产油量变化枯竭式开采阶段,数值模拟模型区单井日油能力按年递减率29.9%的速度递减,单井日液能力按23.7%的速度递减,产量下降较快,递减幅度比较大。(2)油藏工程方法研究产液量、产油量变化一般水驱油藏产油量、产液量变化主要是根据油水相对渗透率曲线所得的无因次采油、采液曲线进行预测,埕岛油田的无因次采油、采液曲线表明,随着含水的上升,无因次采油指数逐渐下降,无因次采液指数逐步上升。到高含水期,无因次采液指数增长加快。当含水60%时,无因次采液指数是无水期采油指数的1.7倍,到含水90%时,达到4倍。(3)数值模拟分析产液量、产油量变化数值模拟研究结果表明:随着含水量上升,产油能力逐步降低,产液能力不断增加。中含水期,油田产油能力下降较快,平均年递减率为24.3%,油田产液能力上升较快,由6250m3上升到7400m3;高含水期,油田产油能力下降较慢,平均年递减率为14%,油田产液能力上升变缓且趋于稳定,保持在11000m3左右。分析主要原因认为:中含水期含水上升较快,在定压差生产的情况下,产液量上升不足以抵消含水的上升,导致日产油量下降也较快;到高含水后,此时由于含水量上升速度变缓,因此日产油量递减较小。而高含水期油田产液能力基本不变,主要是受采油工程的限制,达到了最大液量。五、结论鉴于埕岛一区注水时间较晚,初期注采比可控制在1.0稍高水平,待地层压力恢复到饱和压力附近,再将注采比保持在0.9~1.0。油田含油井段长,一套层系开发,为了避免注入水单层突进,提高水驱波及体积,注水井应尽量分段注水。埕岛一区属高孔、高渗储集层。随着注水开发,渗流阻力减小,油层吸水能力增强,到高含水阶段,吸水指数上升加快,达116m3/(d·MPa)。油田平面水淹面积差别较大,注采井网不完善和平面非均质性严重的层水淹程度低。各小层一般为11~94.7%,平均为67.4%,主力层平面波及面积平均可达84.9%。油田中含水期采出程度低,为9.8%,含水上升快,含水上升率为12.2%。进入高含水期后含水上升速度减缓,含水上升率为4.2%,大部分可采储量将在高含水期采出。其含水上升规律与稠油高渗透油田一般规律基本一致。低含水和中含水期,油田产油量递减较快,平均单井日产油年递减率为24.3%;到高含水期,递减率减小,为14.8%。注水后,产液量逐步增加,大部分井可达到极限产液量300m3。因此,到开发后期,埕岛一区可实行强注强采。主要参考文献[1]陈钦雷.油田开发设计与分析基础.北京:石油工业出版社.1982.[2]黄炳光,刘蜀知.实用油藏工程与动态分析方法.北京:石油工业出版社.1997.

5,gbt1o941一2o13试验允许偏差是多少

1-1 单因素条件试验示意图 这样的试验...[13]?Minitab,是美 国宾州大学研制的国际上流行的...于是 R.E.= x-x x ×100% (2.3) 4)偏差
gb/t 10781.1-2006 浓香型白酒本标准规定了浓香型白酒的术语和定义、产品分类、要求、分析方法、检验规则和标志、包装、运输、贮存。本标准适用于浓香型白酒的生产、检验与销售。

6,谁有测井方面的资料分享一下谢谢

生产测井操作手册编写人:张 勇 张先华 房柏谦 张立军测试技术服务分公司第四大队二00五年十一月五参数测井操作手册1.检测仪器给仪器供正向直流电,电流在170mA±5mA后关闭电源,给电路采用突然加载的方式供电,以保证单片机的正常复位。此时示波器显示波形为归偏曼彻斯特码,各道均有计数率,说明仪器工作正常。给仪器供负向直流电,电流80mA左右,经过10s左右的时间,释放器打开,电流回零,然后用手动方式使释放器密封堵复位,表示释放器工作正常。2.资料录取2.1测前准备仪器检测正常后,可下井测量。打开PL2000遥测软件,单击测井服务下拉菜单中的建立服务进行测井项目的建立。按五参数仪器串从底部到顶部(流量、伽玛、温度、压力、磁定位)选定并确定。测井服务建立好后,根据测井需要,对伽马曲线建立一条伪曲线。单击曲线建立下拉菜单中的伪曲线,选取伽马并确定,完成伽马伪曲线的建立。 伽马伪曲线建立好后,单击曲线建立下拉菜单中的显示表,对测井曲线的显示特性进行设置。如输出状态、左右刻度、轨道号、线型等,根据实际要求确定。 测井服务和曲线建立完成后,对仪器参数进行设置,这是五参数测井中最关键的一步,必须将各参数设置正确,否则将无法测井。单击仪器下拉菜单中的前端建立、参数设置、和零流量刻度,进行相应设置。单击系统下拉菜单中的深度设置,对系统深度进行设置。 以上各项设置好后,即可进行测井曲线的录取了。2.1井温、压力、流量和伽马基线的测量将仪器下至测量井段顶部,关井两小时左右,恢复井下温度场。点击测井对测井特性进行设置。 给仪器供电,在测量井段顶部检查各参数的稳定性,以600m/h的模拟测速,模拟测量60m,检查各参数的稳定性及自然伽马的统计起伏曲线。以600m/h测速下放仪器,测量井温、压力、磁性定位曲线,同时监测自然伽玛基线,并在底部测自然伽玛起伏曲线。 以600m/h测速上提测量自然伽马基线及零流量的流量曲线;同时监测井温、压力曲线的变化形态。 井温、零流量的流量曲线和自然伽马基线各重复测量一条,当测量井段超过100m时,应重复测自然伽玛基线60m。2.2同位素曲线和流量曲线的测量测量完基线后,将仪器上提至测量井段顶部50m(根据注入量大小确定上提距离,注入量大时多提一点,注入量小时少提一点),打开注水闸门或者通知泵站起泵注水,观察注入排量恢复到关井前的注入排量后,给同位素释放器供负电释放同位素。(释放器内同位素容量200ml) 等替注水量达到设计值后,将仪器下至井底,以600m/h测速上提测量至最上层,并加测10m。观察同位素在各层位的吸附,并重复测量一次。 在重点井段要求重复测量一次。点测各参数,同时记录自然伽马的统计起伏。将测井数据存盘,回放资料,打印出五参数测井曲线。阻抗式产液剖面测井操作手册1.测井前准备1.1连接查看井场是否具备施工条件,确认后将仪器与电缆可靠连接,仪器规定一芯为含水率计、涡轮和井温供电;二芯为集流器供电;三芯为磁定位。1.2按顺序检测仪器给一芯供负电,电流50mA~60mA,手摸井温探头,在测井软件上显示温度升高,说明井温探头工作正常; 用导磁物体划过磁定位线圈,在测井软件上能看到明显接箍信号,说明磁定位工作正常。给二芯供正电,电流100mA~150mA,电机转动,仪器开伞,伞完全张开后电流回零;给一芯供正电,电流50mA~60mA,示波器显示波形为正脉冲,仪器含水输出频率在30Hz~40Hz范围内,说明持水率计工作正常。吹动涡轮无杂音,无松动感,示波器上有涡轮负脉冲波形显示为正常。给二芯供负电,电流100mA~150mA,电机转动,仪器收伞,伞完全收回后电流回零。2.仪器下井仪器检查工作正常后,下挂加重杆,并进行安全检查后下井。仪器下入井口时及时将地面仪深度表深度对零,仪器下放速度不大于1500m/h。下放仪器过程中应注意电缆的情况,防止遇阻使电缆堆积。到800m或1000m大记号时,重新校对仪器的深度。在泵上10米或层上50米的位置停止下井,准备进行井温的测量。3.测井操作与资料录取3.1 井温曲线录取给仪器一芯供负电,电流50-60mA,打开PL2000生产测井软件,在测井服务中单击建立服务进入建立服务对话框。在仪器服务表中选择要测量的参数,注意:选择循序必须是从仪器串底部到顶部,否则测量零长将弄反。在选定后单击确定即可。系统软件也为用户提供了建立服务项的简单方法。在“建立服务”下拉列表框中选择“软件启动”,系统会自动把本次测井各种设置,如仪器串名称,曲线显示格式等,设置成与上次测井文件相同。也可以选择“读文件”读取以前的测井文件,来完成本次测井服务建立。测井服务建立好后,在仪器中单击前端建立,出现前端建立对话框。 前端建立主要完成对测井信号的程控控制,磁定位和井温信号的通道、极性必须正确选择,调整增益和门电平,使示波器上显示的信号达到最佳。在曲线建立中单击显示表,弹出曲线显示表对话框,设置测井曲线的特性,轨道号、线型、左右刻度等。将测井服务、仪器设置和曲线显示都建立号后,就可进行测井了。在窗口中点击主窗口,弹出测井窗口对话框3.2磁定位曲线的录取磁定位曲线主要用来进行深度校正。井温测井完毕后,给仪器断电,用上面相同的步骤进行磁定位的测量。磁定位不供电,磁定位曲线测量完毕后,用测井通知单上给出的前磁数据进行深度校正。深度校正完毕后即可进行流量点测。3.3流量、含水曲线的录取将仪器下到第一测量点。打开PL2000测井软件,在测井服务中选择阻抗式找水。建立好服务后,在图头的下拉菜单中选择参数输入,根据测井通知单填好图头所有数据。 图头填完后,在仪器的下拉菜单中单击涡轮K值和读取图版,把下井仪器的涡轮K值、仪器含水率刻度图版输入到计算机测井软件的刻度项中以上所述设置好后,通过电缆给仪器二芯供正向直流电,电流约为100mA~150mA,使伞在井下打开并集流,伞完全打开时电流回零。给仪器一芯供正向直流电,电流约为50mA, 使流量-含水率电路正常工作,在仪器前端建立对话框中选择流量,进行流量的测量。流量信号的采集要求60秒以上,采集完成后点击计算下拉菜单中的计算1和计算2选取计算区间,算出产量1和产量2并保存。流量测量完毕后进行混相的测量。在仪器前端建立对话框中选择含水,进行混相的测量。混相信号的采集要求60秒以上,采集完成后保存,给仪器二芯供负向直流电,电流100-150mA,仪器收伞并完成全水取样。伞完全收拢后给仪器二芯供电,测量全水值。 通过对混相液与全水测量时含水率信号脉冲数的计算比值,可用计算机在仪器刻度图版上查出对应流量下的混相液的含水率。第一点测量完毕后,将仪器下到下一测点,重复上述过程,直到全部测量完毕。4.测井资料回放与处理利用所测的全水值和混相值,通过图版计算出各测点的含水率。依据所测结果合层产量、合层含水,分别算出分层产量、分层含水,填入解释成果表中,根据测量结果分析是否重复或更换仪器。 下列情况应重复测量:对第一产层和主要产层录取重复资料;测量产液量和含水率与静态资料矛盾的层段时应重复测量;单层含水出现负值,产水量 高出产液量5%时应重复;在测最后一点没产量时,要验证仪器正常应重复上一测点。MSC-16多臂井径测井仪现场操作首先取得所测量井的相关技术数据,了解井况。例如:套损深度,套损程度等,便于定出与之相适应的测量深度及测量井段。将仪器与电缆的连接通道与“供电”连接。仪器下井前刻度。首先套上Φ120刻度环,供电+70VDC电压将井径测量臂张开到最大。测量臂张开到最大时电流归零,继续供电到60mA。同时观测示波器曲线形态。运行“生产测井遥测”软件,设置仪器参数,此时可以软启动读取上一次测井的数据,也可通过读取文件来获得仪器设置参数。前端建立选取“十六臂”(已通过软启动或读文件跳过此步)设置参数 (已通过软启动或读文件跳过此步)点击“仪器-前端建立”,在“倍频”项目上打上对勾。正确设置倍频、增益、门槛。 设置完毕点击“测试”。十六条测量臂应有序按上图排列。否则关闭仪器供电,检查连线及电缆头与仪器接触是否可靠。点击“仪器-刻度-零刻度”读取仪器零刻度。套上Φ140mm刻度环,点击“仪器-刻度-正刻度”读取仪器正刻度。点击“仪器-刻度-计算”。 点击“刻度检查”检查正刻度、零刻度的差值,当刻度差值在400-1000mm范围内说明仪器工作正常。仪器刻度完成,供-70VDC电压收拢扶正臂和测量臂准备仪器下井。仪器悬置井口时置入深度。下井速度不能超过4000m/hr。仪器下入测量井段,给仪器供电开始测量录取资料。采样间隔为2.5cm。深度比例为1:200。测试完毕,取出井内仪器刻度,验证仪器工作状态。相关问题及要求a 刻度完成后,用时间驱动检查曲线,如出现抖动、跳动,①可能是仪器供电不足,可适当提高电压;②仪器清洗不彻底,横推杆残留有死油或结蜡,重新冲洗仪器;③仪器自身故障,送回仪器修理。b 不同测井曲线深度误差不超过±0.2m。c 测量曲线异常部位必须重复测量。d 如遇阻,则必须在遇阻以上至少5m以上开始测量,避免损坏仪器扶正臂和测量臂。e 测井资料必须记录有测前、测后两种刻度环刻度曲线(120mm和140mm)刻度曲线允许误差为±1mm。f 所测量井的井况记录要全面。套变深度、套管规范、臂厚、人工井底、套补距等数据。扇区水泥胶结测井操作手册测井仪器为中美公司的扇区水泥胶结测井仪,仪器采用单芯供电和传输,总长4.15m,仪器零长3m。1.测井前的准备将电缆头与仪器连接可靠,确认地面仪接线板正确连接(将面板上供电V 、信号S 与对应仪器的那根缆芯连接在一起)后,给仪器供电,供电电流为70-75mA,打开PL2000声变测井软件,然后读文件,预置深度,查看曲线显示表、仪器参数和VDL波形建立,各个值应如图中所示。1.1测井前仪器调节1.1.1找T0 。为保证每个扇区采到的均为首波信号,必须找到同步信号T0 ,这时将示波器MODE置于Auto档、SOURCE置于EXT档、水平调节置于10ms档、幅度置于5V档,打开“前端建立”,调T0 增益,使其幅度为10V,调T0 门槛,使示波器上能清楚显示如下信号1.1.2调幅度示波器MODE置于NORM、TIME置于0.1,在“前端建立”的信号选择中选择“幅度”,将幅度增益调到最小,分别点击CBL、VDL和八个扇区,看信号是否正常。将CBL延迟、CBL门宽、八扇区延迟、八扇区门宽和VDL延迟设置成图中所示的值。1.2仪器刻度将T0 和幅度调节好后,对仪器进行刻度,分零刻度和正刻度。零刻度完成后下放仪器,这时点击“前端建立”的“采样”,观察示波器上信号幅度,当信号幅度达到最大时停止下放,调节“前端建立”中的“幅度增益”和“VDL增益”。其中扇区幅度应刚好饱和,VDL幅度在15V左右。调节完毕后进行正刻度。2.测井过程中的注意事项在零刻度和正刻度完成后,将仪器下放到井底遇阻,然后进行上提测井,测速600m/h,这时应将采样间隔改为5cm。测井过程中,应注意观察各条曲线,在胶结良好井段,CBL和八扇区均为低幅值,VDL上没有套管波,只有地层波和泥浆波。测到水泥返高时,CBL和八扇区幅度值很高,VDL曲线上有强套管波,按测井要求在水泥返高以上出现五个连续稳定的接箍后可停止测井,测重复曲线,重复曲线为水泥返高处上下50米。但是,在大多数情况下,测不到明显的水泥返高,上面全是混浆,这时不能停止测井,继续上测,必须测出全部混浆段,甚至测到井口。3.测后资料回放及处理打开原始数据,在测得的曲线中选择胶结良好的一点再做零刻度,在自由套管井段选择CBL和扇区声幅曲线值均很大的一点再做正刻度。根据完井声波时差曲线,用VDL曲线上的地层波进行校深,校深完毕后保存打印即可。系统软件操作手册PL2000测井软件主要包括建立服务、曲线建立、仪器设置、深度设置、测井回放处理、 图头等功能模块。1.建立服务建立服务模块主要完成本次测井服务项目的建立,即建立测井仪器串的参数名称及个数。进入PL2000主窗口后,在“测井服务的下拉列表框中选择“建立服务”,系统会自动弹出“仪器服务表窗口”。用鼠标左键选择测井仪器参数名称,通过“选定”和“删除”命令来建立测井服务项目。在确定所建立各项目正确后,可以通过“确认”按钮加以存储 。也可以通过“删除”按钮删除已建立的测井服务。 “建立服务”是必须进入的第一个窗口,否则在其它下拉列表框中选择相应命令时,系统会自动弹出“服务未建立”的小窗口。使得其它命令无法执行。实际上仪器串名称是次要的,重要的录取信号的类型,系统是根据信号类型来录取处理的。也就是说“建立服务”中,你可以选其他仪器串来代替你要建立服务仪器串的名称,只要两者信号类型是相同的。系统软件也为用户提供了建立服务项的简单方法。在“建立服务”下拉列表框中选择“软件启动”,系统会自动把本次测井各种设置,如仪器串名称,曲线显示格式等,设置成与上次测井文件相同。也可以选择“读文件”读取以前的测井文件,来完成本次测井服务建立。软件自动把每次测井资料存放在名为PL的文件夹中,打开其下LOG子文件夹,在其列表框中选择相应的测井文件,选完之后,点击“打开”按钮,系统软件会自动把本次测井的各种数据设置成和选择文件一样。2. 曲线建立该部分主要是建立测井曲线一些初始设置,定义各测井曲线在显示器和打印机上输出的特性。比如,曲线输出名称、左右刻度、输出轨道、线型颜色等。它主要以列表控件的方式列出所有测井曲线的特性。对于选择项,用组合框来实现用户选择;对于其它项目采用编辑输入形式实现用户的设置。在“曲线建立”下拉菜单中,选择“显示曲线”,系统回弹出“曲线显示表”窗口。第一列的参数名称对应着建立服务的测井项目。第二列为输出状态,你可以通过下拉菜单选择该参数输出与否,选择“输出”在打印机和显示屏上将显示该参数信号,选择“不输出”则在显示器和打印机上不显示该参数信号。第三列为信号输出单位。第四列第五列为输出曲线的起始横坐标和终止横坐标。要设置好坐标,必须对输出信号范围有一定了解,否则就会看不到完整曲线或根本看不到曲线信号。第六列为曲线显示轨道。它和输出格式一起决定了曲线显示和输出的位址。第七列规定了用户以什么样线形来显示曲线,软件提供了实线、短画线、长短画线、点画线四种线型。第八列为输出曲线颜色选择。这几项均有下拉菜单,用户只要点击鼠标就可以完成相应的设置。在“曲线建立”下拉菜单中,还有一项“伪曲线”,这是为了满足某些测井项目要求同一轨上输出不同比例的信号,如伽玛曲线,就要求显示1:1和1:2两条曲线。3.仪器设置仪器设置是测井过程中非常重要的一个环节,准确设置好了仪器各参数,才能真实、高质量的录取原始资料。它包括仪器前端建立、仪器刻度、刻度列表、打印刻度方程等功能模块。仪器前端建立与刻度均以属性页的方式实现,每个属性页对应一个测井仪器,并列出对应仪器的参数设置。前端建立主要完成对测井信号的程控控制,对于模拟信号,需要设置信号增益、信号通道以及曲线滤波、中心响应、滤波门槛等参数;对于脉冲信号,需要设置增益、门槛、信号极性、测量通道、硬件滤波等,通过门槛调节可以按脉冲信号高度将其分离,并可排除干扰信号。3.1前端建立用鼠标点击软件主窗口的“仪器”下拉菜单中的前端建立子菜单后,弹出一“前端建立”的窗口。窗口左边为参数测量通道复选框。系统为磁定位提供2条测量通道,磁记号有专门一个测量通道。模拟信号、脉冲信号也有相应的测量通道。窗口右边则为曲线初步处理的一些设置。这对于一个操作员来说可能是最难的,但也是相当重要的一部分。曲线滤波:针对模拟信号的一种平均滤波方式,以深度为步长。如输入0.5,表示对0.5m深度间隔内的采样点求平均值。中心响应:针对模拟信号,滤波门槛:去除干扰信号在。不影响正常测量情况下,设定一个门槛值,把低于此门槛的干扰信号滤去。在信号显示曲线中,我们可以参照设定的起始、终止坐标来看到干扰信号的坐标范围幅度来进行门槛设置。信号极性:根据上传的仪器信号选择正极性或负极性。硬件滤波:针对模拟信号的一种加权滤波方式,即通常说的几点滤波。如输入3,表示3点滤波。仪器长度:某一个测量短节的长度。测量点:传感器到测量零点的距离,即仪器零长。增益:信号调整。增益系数的选择要根据信号大小和设定的坐标左右边界,否则会出现信号显示不全(增益太大)或者信号太小(增益太小),软件提供了6种增益选择(1倍、2倍、4倍、8倍、16倍、32倍、64倍),用户可根据现场的信号的实际情况,选择适当的增益倍数3.2仪器刻度在系统软件中,刻度方程选用的是一元一次线性方程,及Y=AX+B,在大多数测井仪器中,参数反应的物理量值Y值与参数测量到的电学量值X都是成线性的。系统软件为用户提供了两种刻度方法。一种是人工刻度,就是在标准值和测量值中直接输入几组参数数据,通过计算求出A和B的数值,或者直接输入刻度方程;另一种是自动刻度,即软件自动把测量到的电学量值输入到框中,然后通过计算求出A与B的值。在“仪器”下拉菜单中,选择“仪器刻度”就进入了“仪器刻度”窗口。在刻度方式复选框中点击鼠标可选择“人工刻度”或“自动刻度”,并通过“计算”和“确认”就可以完成对仪器刻度。在显示和打印刻度曲线时,如果发现该物理量值与真实值存在误差时,可通过修改截距B来校正刻度曲线。3.3刻度列表我们可以通过刻度列表来查看仪器的电学量值X及相对应物理量值Y的刻度数据 。并可以了解到仪器的性能。在“仪器刻度列表”窗口中,用户可以查看该参数刻度方程A和B值、标准值。软件会自动测量并选取某参数电学量值的最大和最小,取均值做为其电学量值X,及X=1/2(X1+X2)。如果一支仪器性能稳定,及输出的电学量值X1与X2是几乎相等的,从“仪器刻度列表”中的X1和X2的差值大小,就可以判断仪器的稳定性的好坏了。4.深度设置深度预置模块主要用于深度参数设置与深度值设置。深度系统通过ZDW测量轮周长和光电编码器每周脉冲数来计算深度,此外软件还设置了测量轮百米校正。在主窗口中单击“系统”会弹出深度设置对话框。5.测井状态设置当建立好服务项目,完成曲线的建立和仪器刻度等过程,我们可以进行测井了。在软件“窗口”下拉菜单中选择“测井窗口”,当屏幕上出现“测井窗口”之后选择“开始测井”,弹出一个“测井特性”窗体。“输出格式”要求选择参数曲线显示的格式。“测井方向”可根据测井要求在复选框中选择“上测”或“下测”。在“测井方式”复选框中操作员可根据需要选择“时间驱动”及系统每隔一定时间采集一次信号或深度驱动及测量轮“每转一定距离,系统采集一次信号”。在“记录处理”复选框中可根据需要选择记录不记录。“采样时间”针对“时间驱动”、“中断间隔”针对深度驱动。“深度比例”中可根据解释计算站对图线比例要求选择合适比例(1:100、1:50、1:200等)。完成以上设置后,点击“开始”按钮就可以录取资料了。6.测井曲线回放与处理回放处理分曲线数据回放和原始数据回放.曲线数据回放是不做任何计算将原测井曲线打印出图;原始数据回放,可以重新计算,纠正测井前未合适的参数设置,比如;仪器刻度、测量点、滤波参数、中心响应、刻度方程等。同时还可以进行深度平移和比例校正。用鼠标点击主窗口中“回放”就进入了回放处理窗口点击“原始数据回放”,选择“打开文件”,在LOG子文件中选择要回放的文件,再点击“开始回放”就可以回放数据了。在“原始数据回放”状态下,你可以查看测井是的最初设立值,即显示“曲线显示表”、“仪器刻度列表”窗口。我们通过“仪器”下拉菜单中“参数修改”来处理曲线来获得合格的资料。在“曲线滤波”、“硬件滤波”、“中心响应”、“滤波门槛”输入合适的数值后,点击“确认”,再点击“开始回放”,我们就可以获得满意的资料了 7.图头模块图头模块打印输出测井图头。图头项目可由用户根据实际情况随意建立,针对不同测井项目建立相应的图头文件,存入硬盘,每次测井,只需调入标准图头,修改相应项目值,就可方便、快速地完成本次测井图头的建立。用鼠标点击“图头”下拉菜单中的“参数输入”命令按钮会弹出“图头参数”窗体。该窗体完成对测井资料的图头进行编辑的任务,用户根据测井原始资料输入正确内容后,就可以打印了。用户也可以通过“保存文件”来以文件形式存储图头,以备以后调用。用户还可以直接点击“读文件”,来调出一个文件使用。

7,全站仪井下坐标测量两次测量误差应不大于多少

对于纵向误差的限差,一般按定测中线的精度要求给定,为Δl=2m≤(1/2000)L横向贯通限差,根据两开挖洞口之间的长度,小于4km的限差为100mm高程贯通限差一般为50mm,与距离无关.
误差的原因有很多,分为测角和测距,测角又有指标差和二倍照准差,调校仪器主要是这些,如果测距不准可能是测距主板的问题了,只能维修了。再就是仪器调平,对中等等原因照成的了。
看你的精度了!!!! 好像不是隧道吧

8,建筑工程测量误差范围多少秒时什么意思怎么算的比

首先,要了解误差的概念:误差=测量值-真值有时候我们并不能准确得到一个被测值的真值,我们把最或然值(常用多次观测的平均值)来代替真值。也就是说,测量值-真值=真误差然后,要了解什么叫中误差:因真误差不易求得,所以通常用最小二乘法求得的观测值改正数来代替真误差。这里不好写公式,用文字表达是n个观测值与真值之差的平方和、除以n、再开平方根。这个公式就是误差传播率中的最小二乘原理。 很多测量中既定的误差,是指的极限误差(就是指测量过程中产生的最大容许误差)譬如你所举的例子,闭合差不得大于20″,就是极限误差。工程上常以两倍或三倍中误差作为偶然误差的容许值,也就是极限误差原创回答,打字不易。
仪器的误差,及现场实际测量中也会存在误差就是指工程上的线量误差。仪器的标定,及现场施工测量采用闭合测量及多测量几次,采取平均值.延伸:在测量时,测量结果与实际值之间的差值叫误差。真实值或称真值是客观存在的,是在一定时间及空间条件下体现事物的真实数值,但很难确切表达。测得值是测量所得的结果。这两者之间总是或多或少存在一定的差异,就是测量误差。测量误差主要分为三大类:系统误差、随机误差、粗大误差。误差产生的原因可归结为以下几方面。1、测量装置误差2、环境误差3、测量方法误差4、人员误差
文章TAG:注水井测试误差是多少注水井测试误差

最近更新

  • 无线键盘接口电路,电脑键盘按键不行怎么办?无线键盘接口电路,电脑键盘按键不行怎么办?

    接口电路。检查键盘和电脑主机之间的连接接口,以确定接触是否良好,再次插拔连接键盘和电脑主机的USB电缆,键盘电路板是整个键盘的控制核心,位于键盘内部,主要作为按键扫描识别、编码和传输.....

    半导体 日期:2024-04-11

  • 大功率灯泡功率多少,一般家用电灯泡功率多大大功率灯泡功率多少,一般家用电灯泡功率多大

    本文目录一览1,一般家用电灯泡功率多大2,平时所说的大功率LED灯是多大功率3,灯泡电功率一般是多少4,一个普通白炽灯泡功率为多少啊5,400W250W70W150W60W的电灯的功率是多大6,灯泡的实际功率.....

    半导体 日期:2024-04-10

  • 1节1号标准干电池的内阻计算多少,1号电池的内阻是多少1节1号标准干电池的内阻计算多少,1号电池的内阻是多少

    1号电池的内阻是多少2,一节干电池的内阻是多少3,1号和5号干电池内阻各多大4,干电池的内阻一般为多大5,一节干电池的电流是多大6,15V1号干电池内阻一般是多少7,1号电池内阻大约为多少8,一号干.....

    半导体 日期:2024-04-10

  • 运放水位控制电路,水泵水位控制电路示意图运放水位控制电路,水泵水位控制电路示意图

    家用水泵的自动抽水控制电路如下图所示:当水位下降时,浮子开关的触点闭合,水泵工作。电子水位开关和控制器,适用于污水环境,当水位下降到B点以下时,由于脚②的低电位而设置,高输出电平释放继.....

    半导体 日期:2024-04-10

  • 30mw是多少w,喇叭功率30MW 是 什么意思30mw是多少w,喇叭功率30MW 是 什么意思

    喇叭功率30MW是什么意思mW是表示功率大小的一种单位,1KW=1000W,1W=1000mW。2,30mwcm2等于多少wm230/1000*10000=300没看懂什么意思?3,2030mw什么意思20-30兆瓦,1兆瓦=1000KW虽然我很聪明,但这.....

    半导体 日期:2024-04-10

  • 下雨传感器电路,用于感应雨水的传感器下雨传感器电路,用于感应雨水的传感器

    雨雪传感器,雨雪天主机自动停机。当刮水器杆设置在INT位置时,下雨时,雨量传感器将自动感应雨量以挂水,它装有雨水传感器,刮风下雨时会自动关窗,GloriasaltyRV有一个雨水传感器,此时在外面晾晒.....

    半导体 日期:2024-04-10

  • 反 型滤波电路,反向过滤方法反 型滤波电路,反向过滤方法

    如果我们想要获得更好的滤波效果,通常需要一个由电容和电感组成的滤波电路,例如“π滤波电路”。通常π型滤波电路由两个电容和一个电阻组成,滤波效果较好,因为滤波电路需要大容量的储能电.....

    半导体 日期:2024-04-10

  • 有源回馈整流电压提升,反馈整流器和有源整流器的区别有源回馈整流电压提升,反馈整流器和有源整流器的区别

    使用电流源作为共发射极放大器电路的有源负载可以通过电流源的大交流等效电阻提高输出电压增益。单相桥式整流电路、双绕组全波整流电路和半波整流电路,整流后的电压为空载时的交流电压.....

    半导体 日期:2024-04-10