首页 > 算法 > 自动驾驶 > 一般的mos管ron 是多少,MOS管的过驱动电压及阈值电压是多少

一般的mos管ron 是多少,MOS管的过驱动电压及阈值电压是多少

来源:整理 时间:2023-03-29 03:27:00 编辑:亚灵电子网 手机版

1,MOS管的过驱动电压及阈值电压是多少

正常驱动10-15,不要超过20V。 开启的阈值电压4-5V。 关断最好有-5到-10V,或者保持低阻。

MOS管的过驱动电压及阈值电压是多少

2,MOS管用数字万用表怎么测其好坏及引脚

MOS管导通前后有什么区别?怎么用万用表检测MOS管的好坏?和三极管方法一样吗? 00:00 / 01:3670% 快捷键说明 空格: 播放 / 暂停Esc: 退出全屏 ↑: 音量提高10% ↓: 音量降低10% →: 单次快进5秒 ←: 单次快退5秒按住此处可拖拽 不再出现 可在播放器设置中重新打开小窗播放快捷键说明

MOS管用数字万用表怎么测其好坏及引脚

3,MOS管有一个参数叫脉冲电流请问脉冲电流的定义是什么多宽的

脉冲电流通常是瞬时的,持续时间很短,一般不超过10US。而且一般不重复,因此没有周期可言。
同问。。。

MOS管有一个参数叫脉冲电流请问脉冲电流的定义是什么多宽的

4,mos管的主要参数

1.开启电压VT·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;·标准的N沟道MOS管,VT约为3~6V;·通过工艺上的改进,可以使MOS管的VT值降到2~3V。2. 直流输入电阻RGS·即在栅源极之间加的电压与栅极电流之比·这一特性有时以流过栅极的栅流表示·MOS管的RGS可以很容易地超过1010Ω。3. 漏源击穿电压BVDS·在VGS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS·ID剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿(2)漏源极间的穿通击穿·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID4. 栅源击穿电压BVGS·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。5. 低频跨导gm·在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导·gm反映了栅源电压对漏极电流的控制能力·是表征MOS管放大能力的一个重要参数·一般在十分之几至几mA/V的范围内6. 导通电阻RON·导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数·在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间·由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似·对一般的MOS管而言,RON的数值在几百欧以内7. 极间电容·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS·CGS和CGD约为1~3pF·CDS约在0.1~1pF之间8. 低频噪声系数NF·噪声是由管子内部载流子运动的不规则性所引起的·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)·这个数值越小,代表管子所产生的噪声越小·低频噪声系数是在低频范围内测出的噪声系数·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

5,mos管什么参数的单位是安每伏的平方

这与mos管沟道面积大小有关的制做工艺。沟道面积大承载电流也大、硅片所需面积也大。结层做的厚耐压也高,确定了这两个标准派生上万型号,N/PmOs/A/V。

6,门电路详细解说与用途

第五节 CMOS逻辑门电路http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把 CMOS逻辑门电路是在TTL电路问世之后 ,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地位的逻辑器件 。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件 ,以及PLD器件都采用CMOS艺制造,且费用较低。 早期生产的CMOS门电路为4000系列 ,随后发展为4000B系列。当前与TTL兼容的CMO器件如74HCT系列等可与TTL器件交换使用。下面首先讨论CMOS反相器,然后介绍其他CMO逻辑门电路。MOS管结构图MOS管主要参数:1.开启电压VT ·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压; ·标准的N沟道MOS管,VT约为3~6V; ·通过工艺上的改进,可以使MOS管的VT值降到2~3V。2. 直流输入电阻RGS ·即在栅源极之间加的电压与栅极电流之比 ·这一特性有时以流过栅极的栅流表示 ·MOS管的RGS可以很容易地超过1010Ω。3. 漏源击穿电压BVDS ·在VGS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS ·ID剧增的原因有下列两个方面: (1)漏极附近耗尽层的雪崩击穿 (2)漏源极间的穿通击穿 ·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID4. 栅源击穿电压BVGS ·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。5. 低频跨导gm ·在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导 ·gm反映了栅源电压对漏极电流的控制能力 ·是表征MOS管放大能力的一个重要参数 ·一般在十分之几至几mA/V的范围内6. 导通电阻RON ·导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数 ·在饱和区,ID几乎不随VDS改变,RON的数值很大 ,一般在几十千欧到几百千欧之间 ·由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似 ·对一般的MOS管而言,RON的数值在几百欧以内7. 极间电容 ·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS ·CGS和CGD约为1~3pF ·CDS约在0.1~1pF之间8. 低频噪声系数NF ·噪声是由管子内部载流子运动的不规则性所引起的 ·由于它的存在,就使一个放大器即便在没有信号输人时,在输 出端也出现不规则的电压或电流变化 ·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB) ·这个数值越小,代表管子所产生的噪声越小 ·低频噪声系数是在低频范围内测出的噪声系数 ·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小一、CMOS反相器由本书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。 下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即VDD>(VTN+|VTP|) 。1.工作原理首先考虑两种极限情况:当vI处于逻辑0时 ,相应的电压近似为0V;而当vI处于逻辑1时,相应的电压近似为VDD。假设在两种情况下N沟道管 TN为工作管P沟道管TP为负载管。但是,由于电路是互补对称的,这种假设可以是任意的,相反的情况亦将导致相同的结果。 下图分析了当vI=VDD时的工作情况。在TN的输出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,叠加一条负载线,它是负载管TP在 vSGP=0V时的输出特性iD-vSD。由于vSGP<VT(VTN=|VTP|=VT),负载曲线几乎是一条与横轴重合的水平线。两条曲线的交点即工作点。显然,这时的输出电压vOL≈0V(典型值<10mV ,而通过两管的电流接近于零。这就是说,电路的功耗很小(微瓦量级)下图分析了另一种极限情况,此时对应于vI=0V。此时工作管TN在vGSN=0的情况下运用,其输出特性iD-vDS几乎与横轴重合 ,负载曲线是负载管TP在vsGP=VDD时的输出特性iD-vDS。由图可知,工作点决定了VO=VOH≈VDD;通过两器件的电流接近零值 。可见上述两种极限情况下的功耗都很低。 由此可知,基本CMOS反相器近似于一理想的逻辑单元,其输出电压接近于零或+VDD,而功耗几乎为零。2.传输特性下图为CMOS反相器的传输特性图。图中VDD=10V,VTN=|VTP|=VT=2V。由于 VDD>(VTN+|VTP|),因此,当VDD-|VTP|>vI>VTN 时,TN和TP两管同时导通。考虑到电路是互补对称的,一器件可将另一器件视为它的漏极负载。还应注意到,器件在放大区(饱和区)呈现恒流特性,两器件之一可当作高阻值的负载。因此,在过渡区域,传输特性变化比较急剧。两管在VI=VDD/2处转换状态。3.工作速度CMOS反相器在电容负载情况下,它的开通时间与关闭时间是相等的,这是因为电路具有互补对称的性质。下图表示当vI=0V时 ,TN截止,TP导通,由VDD通过TP向负载电容CL充电的情况。由于CMOS反相器中,两管的gm值均设计得较大,其导通电阻较小,充电回路的时间常数较小。类似地,亦可分析电容CL的放电过程。CMOS反相器的平均传输延迟时间约为10ns。二、CMOS门电路1.与非门电路下图是2输入端CMOS与非门电路,其中包括两个串联的N沟道增强型MOS管和两个并联的P沟道增强型MOS管。每个输入端连到一个N沟道和一个P沟道MOS管的栅极。当输入端A、B中只要有一个为低电平时,就会使与它相连的NMOS管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B全为高电平时,才会使两个串联的NMOS管都导通,使两个并联的PMOS管都截止,输出为低电平。因此,这种电路具有与非的逻辑功能,即 n个输入端的与非门必须有n个NMOS管串联和n个PMOS管并联。2.或非门电路下图是2输入端CMOS或非门电路。其中包括两个并联的N沟道增强型MOS管和两个串联的P沟道增强型MOS管。当输入端A、B中只要有一个为高电平时,就会使与它相连的NMOS管导通,与它相连的PMOS管截止,输出为低电平;仅当A、B全为低电平时,两个并联NMOS管都截止,两个串联的PMOS管都导通,输出为高电平。 因此,这种电路具有或非的逻辑功能,其逻辑表达式为 显然,n个输入端的或非门必须有n个NMOS管并联和n个PMOS管并联。 比较CMOS与非门和或非门可知,与非门的工作管是彼此串联的,其输出电压随管子个数的增加而增加;或非门则相反,工作管彼此并联,对输出电压不致有明显的影响。因而或非门用得较多。3.异或门电路上图为CMOS异或门电路。它由一级或非门和一级与或非门组成。或非门的输出。而与或非门的输出L即为输入A、B的异或 如在异或门的后面增加一级反相器就构成异或非门,由于具有的功能,因而称为同或门。异成门和同或门的逻辑符号如下图所示。三、BiCMOS门电路双极型CMOS或BiCMOS的特点在于,利用了双极型器件的速度快和MOSFET的功耗低两方面的优势,因而这种逻辑门电路受到用户的重视。1.BiCMOS反相器上图表示基本的BiCMOS反相器电路,为了清楚起见,MOSFET用符号M表示BJT用T表示。T1和T2构成推拉式输出级。而Mp、MN、M1、M2所组成的输入级与基本的CMOS反相器很相似。输入信号vI同时作用于MP和MN的栅极。当vI为高电压时MN导通而MP截止;而当vI为低电压时,情况则相反,Mp导通,MN截止。当输出端接有同类BiCMOS门电路时,输出级能提供足够大的电流为电容性负载充电。同理,已充电的电容负载也能迅速地通过T2放电。 上述电路中T1和T2的基区存储电荷亦可通过M1和M2释放,以加快电路的开关速度。当vI为高电压时M1导通,T1基区的存储电荷迅速消散。这种作用与TTL门电路的输入级中T1类似。同理 ,当vI为低电压时,电源电压VDD通过MP以激励M2使M2导通,显然T2基区的存储电荷通过M2而消散。可见,门电路的开关速度可得到改善。2.BiCMOS门电路根据前述的CMOS门电路的结构和工作原理,同样可以用BiCMOS技术实现或非门和与非门。如果要实现或非逻辑关系,输入信号用来驱动并联的N沟道MOSFET,而P沟道MOSFET则彼此串联。正如下图所示的2输入端或非门。当A和B均为低电平时,则两个MOSFET MPA和MPB均导通,T1导通而MNA和MNB均截止,输出L为高电平。与此同时,M1通过MPA和MpB被VDD所激励,从而为T2的基区存储电荷提供一条释放通路。 另一方面,当两输入端A和B中之一为高电平时 ,则MpA和MpB的通路被断开,并且MNA或MNB导通,将使输出端为低电平。同时,M1A或M1B为T1的基极存储电荷提供一条释放道路。因此 ,只要有一个输入端接高电平,输出即为低电平。四、CMOS传输门MOSFET的输出特性在原点附近呈线性对称关系,因而它们常用作模拟开关。模拟开关广泛地用于取样——保持电路、斩波电路、模数和数模转换电路等。下面着重介绍CMOS传输门。所谓传输门(TG)就是一种传输模拟信号的模拟开关。CMOS传输门由一个P沟道和一个N沟道增强型MOSFET并联而成,如上图所示。TP和TN是结构对称的器件,它们的漏极和源极是可互换的。设它们的开启电压|VT|=2V且输入模拟信号的变化范围为-5V到+5V 。为使衬底与漏源极之间的PN结任何时刻都不致正偏 ,故TP的衬底接+5V电压,而TN的衬底接-5V电压 。两管的栅极由互补的信号电压(+5V和-5V)来控制,分别用C和表示。 传输门的工作情况如下:当C端接低电压-5V时TN的栅压即为-5V,vI取-5V到+5V范围内的任意值时,TN均不导通。同时,TP的栅压为+5V,TP亦不导通。可见,当C端接低电压时,开关是断开的。 为使开关接通,可将C端接高电压+5V。此时TN的栅压为+5V ,vI在-5V到+3V的范围内,TN导通。同时TP的棚压为-5V ,vI在-3V到+5V的范围内TP将导通。 由上分析可知,当vI<-3V时,仅有TN导通,而当vI>+3V时,仅有TP导通当vI在-3V到+3V的范围内,TN和TP两管均导通。进一步分析还可看到,一管导通的程度愈深,另一管的导通程度则相应地减小。换句话说,当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管系并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS传输出门的优点。 在正常工作时,模拟开关的导通电阻值约为数百欧,当它与输入阻抗为兆欧级的运放串接时,可以忽略不计。 CMOS传输门除了作为传输模拟信号的开关之外,也可作为各种逻辑电路的基本单元电路。

7,MOS管是什么

MOS管一般又叫场效应管,与二极管和三极管不同,二极管只能通过正向电流,反向截止,不能控制,三极管通俗讲就是小电流放大成受控的大电流,MOS管是小电压控制电流的,MOS管的输入电阻极大,兆欧级的,容易驱动,但是价格比三极管要高,一般适用于需要小电压控制大电流的情况,电磁炉里一般就是用的20A或者25A的场效应管。

8,求助mos管参数怎么修改

在sch文件中选中该管子,然后在Edit菜单下选择Edit Pspice Model,可以打开模型编辑器,进行编辑后保存即可。
mos管主要参数如下:1.开启电压vt·开启电压(又称阈值电压):使得源极s和漏极d之间开始形成导电沟道所需的栅极电压;·标准的n沟道mos管,vt约为3~6v;·通过工艺上的改进,可以使mos管的vt值降到2~3v。2. 直流输入电阻rgs·即在栅源极之间加的电压与栅极电流之比·这一特性有时以流过栅极的栅流表示·mos管的rgs可以很容易地超过1010ω。3. 漏源击穿电压bvds·在vgs=0(增强型)的条件下 ,在增加漏源电压过程中使id开始剧增时的vds称为漏源击穿电压bvds·id剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿(2)漏源极间的穿通击穿·有些mos管中,其沟道长度较短,不断增加vds会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的id4. 栅源击穿电压bvgs·在增加栅源电压过程中,使栅极电流ig由零开始剧增时的vgs,称为栅源击穿电压bvgs。5. 低频跨导gm·在vds为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导·gm反映了栅源电压对漏极电流的控制能力·是表征mos管放大能力的一个重要参数·一般在十分之几至几ma/v的范围内6. 导通电阻ron·导通电阻ron说明了vds对id的影响 ,是漏极特性某一点切线的斜率的倒数·在饱和区,id几乎不随vds改变,ron的数值很大,一般在几十千欧到几百千欧之间·由于在数字电路中 ,mos管导通时经常工作在vds=0的状态下,所以这时的导通电阻ron可用原点的ron来近似·对一般的mos管而言,ron的数值在几百欧以内7. 极间电容·三个电极之间都存在着极间电容:栅源电容cgs 、栅漏电容cgd和漏源电容cds·cgs和cgd约为1~3pf·cds约在0.1~1pf之间8. 低频噪声系数nf·噪声是由管子内部载流子运动的不规则性所引起的·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化·噪声性能的大小通常用噪声系数nf来表示,它的单位为分贝(db)·这个数值越小,代表管子所产生的噪声越小·低频噪声系数是在低频范围内测出的噪声系数·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

9,MOS管参数

你确定有MT3205这个型号?我在比较权威的电子元器件网站怎么查不出来?另外,前面这个应该是IRF3205,这个很常见,可以轻松买到。你要是不放心,直接用前面这个好了。
mos管主要参数如下:1.开启电压vt·开启电压(又称阈值电压):使得源极s和漏极d之间开始形成导电沟道所需的栅极电压;·标准的n沟道mos管,vt约为3~6v;·通过工艺上的改进,可以使mos管的vt值降到2~3v。2. 直流输入电阻rgs·即在栅源极之间加的电压与栅极电流之比·这一特性有时以流过栅极的栅流表示·mos管的rgs可以很容易地超过1010ω。3. 漏源击穿电压bvds·在vgs=0(增强型)的条件下 ,在增加漏源电压过程中使id开始剧增时的vds称为漏源击穿电压bvds·id剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿(2)漏源极间的穿通击穿·有些mos管中,其沟道长度较短,不断增加vds会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的id4. 栅源击穿电压bvgs·在增加栅源电压过程中,使栅极电流ig由零开始剧增时的vgs,称为栅源击穿电压bvgs。5. 低频跨导gm·在vds为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导·gm反映了栅源电压对漏极电流的控制能力·是表征mos管放大能力的一个重要参数·一般在十分之几至几ma/v的范围内6. 导通电阻ron·导通电阻ron说明了vds对id的影响 ,是漏极特性某一点切线的斜率的倒数·在饱和区,id几乎不随vds改变,ron的数值很大,一般在几十千欧到几百千欧之间·由于在数字电路中 ,mos管导通时经常工作在vds=0的状态下,所以这时的导通电阻ron可用原点的ron来近似·对一般的mos管而言,ron的数值在几百欧以内7. 极间电容·三个电极之间都存在着极间电容:栅源电容cgs 、栅漏电容cgd和漏源电容cds·cgs和cgd约为1~3pf·cds约在0.1~1pf之间8. 低频噪声系数nf·噪声是由管子内部载流子运动的不规则性所引起的·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化·噪声性能的大小通常用噪声系数nf来表示,它的单位为分贝(db)·这个数值越小,代表管子所产生的噪声越小·低频噪声系数是在低频范围内测出的噪声系数·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

10,CMOS逻辑电路的MOS参数

1.开启电压VT·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;·标准的N沟道MOS管,VT约为3~6V;·通过工艺上的改进,可以使MOS管的VT值降到2~3V。2. 直流输入电阻RGS·即在栅源极之间加的电压与栅极电流之比·这一特性有时以流过栅极的栅流表示·MOS管的RGS可以很容易地超过1010Ω。3. 漏源击穿电压BVDS·在VGS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS·ID剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿(2)漏源极间的穿通击穿·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID 。4. 栅源击穿电压BVGS·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。5. 低频跨导gm·在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导·gm反映了栅源电压对漏极电流的控制能力·是表征MOS管放大能力的一个重要参数·一般在十分之几至几mA/V的范围内 。6. 导通电阻RON·导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数·在饱和区,ID几乎不随VDS改变,RON的数值很大 ,一般在几十千欧到几百千欧之间·由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似·对一般的MOS管而言,RON的数值在几百欧以内 。7. 极间电容·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS·CGS和CGD约为1~3pF·CDS约在0.1~1pF之间。8. 低频噪声系数NF·噪声是由管子内部载流子运动的不规则性所引起的·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)·这个数值越小,代表管子所产生的噪声越小·低频噪声系数是在低频范围内测出的噪声系数·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小 。
cd4000和cd4500系列cmos逻辑电路通常标称最大输出能力高低电平均为6.8毫安,但速度较低。74系列cmos逻辑电路种类繁多,速度比cd4000和cd4500系列高许多倍。输出能力也不同,从几毫安到几十毫安,这些输出电流是指在保持驱动逻辑电平定义区域的电流输出,超出驱动逻辑电平定义区域,其电流输出能力还要高一倍到几倍,有些上百毫安。比如逻辑电路输出接大功率晶体管切换继电器,就可以不考虑逻辑驱动电平定义区域。以8驱动器74244为例,以下为74系列中全部使用(如74hc)或部分使用(如74abt)cmos技术的ic,不包括纯双极型,如74ls,74f等。低为低电平吸入电流,高为高电平扇出电流,单位为毫安。型号 低 高-----------------------------------------74abt244 64 3274ac244 24 2474act244 24 2474acq244 24 2474hac244 8 874haalb16244 24 2474alvc244 24 2474alvch244 24 2474alvt1624 64 3274alvtc16244 64 3274alvth162244 12 874avc244 12 874avc+244 12 874avch244 12 1274bct244 64 1574c244 70 7074hc244 8 874hct244 8 8c74lcx244 24 24c74lcxh1624 12 12c74lcxz1624 12 1274lvc244 24 2474lvch244 24 2474lvcz244 24 2474lvq244 12 1274lvt244 64 3274lvtch16244 24 2474lvth244 64 3274lvtn16244 64 32c74lvx244 4 474vcx16244 24 2474vcxh16244 24 2474vhc244 8 874vhct244 8 8
文章TAG:一般的mos管ron一般mos管多少

最近更新

  • BA6208是什么芯片,BA6247是什么芯片?BA6208是什么芯片,BA6247是什么芯片?

    什么是芯片,它的用途是什么?BABA:镁光的MLC闪存芯片,单芯片,本地主控芯片BA,这是PCItoISA桥芯片的最后一张图,右边是BIOS芯片。都是信号解调芯片,芯片正面连接调谐器芯片,调谐器芯片为开关电源.....

    自动驾驶 日期:2024-04-10

  • 松下npm贴片机多少钱,买松下贴片机多少钱松下npm贴片机多少钱,买松下贴片机多少钱

    买松下贴片机多少钱5元2,问下全新的松下贴片机cm602Lnmejm8a12吸嘴0402芯片的的要300万1000万都有你好!大概20万左右,市场的行情是这样,可以去问问。打字不易,采纳哦!3,买一台松下贴片机要多.....

    自动驾驶 日期:2024-04-10

  • A9智能电视处理器能跑多少分,A9频率14怎么442系统和422系统安兔兔跑分一样A9智能电视处理器能跑多少分,A9频率14怎么442系统和422系统安兔兔跑分一样

    A9频率14怎么442系统和422系统安兔兔跑分一样2,海信LED网络电视所用的A9CPU是怎样档次的CPU3,Mstar6A918处理器的主要参数4,a9处理器相当于骁龙多少5,三星a9安兔兔跑分50000多分正常吗6,苹.....

    自动驾驶 日期:2024-04-10

  • 03db是多少,30wt等于多少03db是多少,30wt等于多少

    30wt等于多少wt%是重量百分比的意思,如重量百分含量为30。即100公斤物质中,某元素含量为30公斤。0.32,33cl等于多少ml厘升cl是体积单位为酿酒行业以及调酒师的常用术语进行单位转换的话1.....

    自动驾驶 日期:2024-04-10

  • 占空比多少有意义,占空比控制有什么优点占空比多少有意义,占空比控制有什么优点

    占空比控制有什么优点2,100占空比有何意义3,氩弧焊机的占空比在脉冲的过程中起到什么作用4,万用表上的占空比是什么意思什么是占空比占空比是什么意思5,占空比有什么作用谁来指点一下6,什么.....

    自动驾驶 日期:2024-04-10

  • 电路正负极颠倒危害,锂电池正负极接反电路正负极颠倒危害,锂电池正负极接反

    损坏电路元件:电动自行车电池正负极接反后,通电后会损坏电路元件。一旦正负极颠倒,电动自行车电池正负极接反会导致以下情况:保险丝熔断:电动自行车电池正负极接反后,保险丝一旦通电就会.....

    自动驾驶 日期:2024-04-10

  • 电路图中网孔,电路中网格的概念电路图中网孔,电路中网格的概念

    网格电流法只适用于平面电路图。网状:在确定的电路图中,最简单的不能细分的回路称为网状,下面的电路图中有几个分支,电路拓扑又称电路图,即电路结构,是对电路图的再次抽象,网状:将电路画在平.....

    自动驾驶 日期:2024-04-10

  • 电路板的硬件调试,简述硬件电路的设计流程电路板的硬件调试,简述硬件电路的设计流程

    电路板制作完成后,将购买的元件焊接到PCB板上,然后对电路板进行测试和调试。印刷电路板的测试和调试计划,拿到电路板的第一件事是查看是否有大型设备型号和引脚,更换电路板的高昂成本也成.....

    自动驾驶 日期:2024-04-10